The first published research on the groundbreaking use of a modified gene-editing system to produce horn-free dairy cattle was released this week in Proceedings of the National Academy of Sciences (PNAS). PNAS is the official journal of the National Academies of Sciences and is among the world’s most-cited multidisciplinary scientific publications.

Drs. Scott Fahrenkrug, Perry Hackett and their team at Recombinetics, a Minnesota-based global innovator in genome editing, authored “Efficient nonmeiotic allele introgression in livestock using custom endonucleases”, a new paper detailing an important new approach that will not only make hornless dairy cattle a reality, but accelerate the genetic improvement of livestock for food production and the development of regenerative medicines.

“For some time now,” explains Fahrenkrug, CEO of Recombinetics, “farmers have practiced selective breeding for desirable DNA variation with the intention of influencing livestock traits. In this paper, we have shown for the first time that it’s possible to bypass decades of breeding by introgressing genetic variants directly into livestock genomes using targeted nucleases, without the use of any transgenic DNA. Our team used TALENs and other sequence-specific DNA scissors to custom-engineer and modify several genes of interest in pigs, cows and goats.” Recombinetics uses its proprietary genome-editing technologies to accelerate the breeding of natural characteristics in livestock to enhance their health and welfare, and advance worldwide food production and safety.
The group demonstrated that a sequence associated with horns in dairy cattle could be converted to a natural beef cattle variant that is hornless, providing a strategy to improve animal welfare by genetic, instead of physical or chemical dehorning.
Targeted genetic improvement can save numerous generations and decades of selective breeding. The technology promises to rapidly enhance protein production in indigenous livestock breeds and to introduce natural disease resilience traits into breeds and species that don’t already have them. The paper also reports the introgression of precise variants from warthogs into the swine genome to protect against the highly-contagious and lethal African Swine Fever Virus; and the copying of a natural sequence into the goat genome to increase the frequency of twinning, helping enhance food security for small farmers in the developing world.
Recombinetics also applies its genome-editing solutions and TALEN technologies to create large animal models for human disease research accelerate the development of therapeutic compounds, medical devices and protocols.
SOURCE: BusinessWire

About Recombinetics
A private company founded in 2008, Recombinetics has emerged as a global leader in proprietary gene repair and gene-editing technology. Breakthrough scientific research – including the development of TALEN technologies – has resulted in global exclusive rights in the biomedical, animal agriculture and livestock vertical markets.